GeoBench: Benchmarking and Analyzing
Monocular Geometry Estimation Models

Yongtao Ge1,2    Guangkai Xu1    Zhiyue Zhao1    Libo Sun2   
Zheng Huang1    Yanlong Sun3    Hao Chen1    Chunhua Shen1   
1Zhejiang University    2The Univerity of Adelaide    3Tsinghua University   

TL;DR

A comprehensive Monocular Geometry Benchmark for evaluating SOTA discriminative and generative depth and surface normal estimation foundation models. The conclusions are:
1. Discriminative Models pretrained with large data (e.g. DINOv2), can outperform generative models pretrained with Stable Diffusion with a small scale synthetic data under the same training configuration.
2. Synthetic Data is critial for fine-grained depth estimation. Data quality is a more important factor than model architectures and data scales.
3. Inductive bias is critial for surface normal estimation.

Citation

@article{ge2024geobench,
    title={GeoBench: Benchmarking and Analyzing Monocular Geometry Estimation Models},
    author={Ge, Yongtao and Xu, Guangkai, and Zhao, Zhiyue and Huang, zheng and Sun, libo and Sun, Yanlong and Chen, Hao and Shen, Chunhua},
    journal={arXiv preprint arXiv:2406.12671},
    year={2024}
}